
UDM Framework: Data Quality &
Governance

Built-In Quality Assurance and Governance Features

Introduction

Data quality and governance are not afterthoughts in the UDM Framework—they're built
into its core architecture. The Fallout system, source system traceability, and audit
capabilities provide comprehensive data quality management and governance that meets
regulatory and business requirements.

The Fallout System: Heart of Data Quality

Philosophy: Fail Gracefully, Track Everything

Traditional Data Quality Approach:

flowchart LR

 BadData[Bad Data] --> Fail[ETL Fails]

 Fail --> Stop[Pipeline Stops]

 Stop --> NoData[No Data Loaded]

 NoData --> Manual[Manual Investigation]

 Manual --> Fix[Fix]

 Fix --> Rerun[Rerun]

 style BadData fill:#ffcdd2

 style Fail fill:#f44336,color:#fff

 style Stop fill:#f44336,color:#fff

 style NoData fill:#ffcdd2

Problems:

All-or-nothing: One bad record blocks thousands of good records
Limited visibility: Error logs are cryptic and scattered
Slow resolution: Manual investigation required for each failure
Business impact: Reports missing data without explanation

UDM Fallout Approach:

flowchart LR

 BadData[Bad Data Detected] --> Log[Logged to Fallout]

 Log --> Continue[Pipeline Continues]

 Continue --> GoodData[Good Data Loaded]

 GoodData --> Track[Transparent Tracking]

 Track --> Analyze[Systematic Analysis]

 Analyze --> Resolve[Resolution]

 Resolve --> Reprocess[Auto-Reprocessing]

 style BadData fill:#fff4e1

 style Log fill:#e8f5e9

 style Continue fill:#c8e6c9

 style GoodData fill:#4caf50,color:#fff

 style Track fill:#e1f5ff

 style Analyze fill:#e1f5ff

 style Resolve fill:#c8e6c9

 style Reprocess fill:#4caf50,color:#fff

Benefits:

Graceful degradation: Good data flows through, bad data tracked separately
Complete visibility: Every issue logged with context
Faster resolution: Systematic analysis and prioritization
Business transparency: Stakeholders see what's missing and why

Fallout Architecture

Core Tables

Fallout.Fallout: Main tracking table

CREATE TABLE [Fallout].[Fallout](

 [FalloutId] [int] IDENTITY(1,1) NOT NULL,

 [ErrorCodeId] [int] NOT NULL, -- Type of error

 [SourceSystemId] [bigint] NOT NULL, -- Which source

 [SourceSystemIdentifier] [nvarchar](100) NOT NULL, -- Which record

 [InsertDate] [datetime] NOT NULL, -- When detected

 [SolveDate] [datetime] NULL, -- When resolved

 CONSTRAINT [PK_Fallout] PRIMARY KEY ([FalloutId])

)

Fallout.ErrorCode: Error taxonomy

CREATE TABLE [Fallout].[ErrorCode](

 [ErrorCodeId] [int] NOT NULL,

 [ErrorDescription] [nvarchar](200) NULL,

 [ErrorCategory] [nvarchar](50) NULL,

 [ResolutionGuidance] [nvarchar](max) NULL,

 CONSTRAINT [PK_ErrorCode] PRIMARY KEY ([ErrorCodeId])

)

Standard Error Codes

Referential Integrity (11-19):

11: Missing Foreign Key - Lead/Opportunity
12: Missing Foreign Key - Channel/Marketing
13: Missing Foreign Key - Status/Lookup
14: Missing Foreign Key - Product
15: Missing Foreign Key - Customer/Contact
16-19: Additional FK errors (domain-specific)

Data Format (20-29):

20: Invalid Data Type (type conversion failure)
21: Invalid Date Format
22: Invalid Numeric Value
23: Invalid Email Format
24: Invalid Phone Format
25-29: Additional format errors

Business Logic (30-39):

30: Business Rule Violation - General
31: Negative Amount (where positive expected)
32: Future Date (where past expected)
33: Invalid Status Transition
34: Duplicate Transaction
35-39: Additional business rule errors

Data Quality (40-49):

40: Duplicate Record
41: Missing Required Field
42: Orphaned Record
43: Data Inconsistency
44-49: Additional quality issues

Fallout Detection Patterns

Pattern 1: Missing Foreign Key

// ADF Dataflow transformation

Records, DimensionTable lookup(

 Records@FKColumn == DimensionTable@IdColumn,

 multiple: false,

 pickup: 'first'

) ~> LookupDimension

// Split: Found vs. Not Found

LookupDimension split(

 isNull(DimensionTable@IdColumn),

 disjoint: false

) ~> SplitOnFK@(FalloutPath, SuccessPath)

// Route to fallout

SplitOnFK@FalloutPath derive(

 ErrorCodeId = 15, // Missing Customer FK

 InsertDate = currentTimestamp()

) ~> AddFalloutMetadata

// Deduplicate (don't log same error twice)

AddFalloutMetadata, ExistingFallout exists(

 AddFalloutMetadata@ErrorCodeId == ExistingFallout@ErrorCodeId

 && AddFalloutMetadata@SourceSystemId == ExistingFallout@SourceSystemI

 && AddFalloutMetadata@SourceSystemIdentifier == ExistingFallout@Sourc

 && isNull(ExistingFallout@SolveDate),

 negate: true

) ~> NewFalloutOnly

NewFalloutOnly sink(...) ~> FalloutSink

// Continue with valid records

SplitOnFK@SuccessPath ~> NextTransformation

Pattern 2: Business Rule Violation

-- Stored procedure validation before dataflow

CREATE PROCEDURE [dbo].[ValidateBusinessRules]

 @SourceSystemId BIGINT

AS

BEGIN

 -- Detect negative amounts (where should be positive)

 INSERT INTO Fallout.Fallout (

 ErrorCodeId,

 SourceSystemId,

 SourceSystemIdentifier,

 InsertDate

)

 SELECT DISTINCT

 31, -- Negative amount error

 @SourceSystemId,

 f.SourceSystemIdentifier,

 GETDATE()

 FROM Flow.Sales_Order_16 f

 LEFT JOIN Fallout.Fallout existing

 ON existing.SourceSystemId = @SourceSystemId

 AND existing.SourceSystemIdentifier = f.SourceSystemIdentifier

 AND existing.ErrorCodeId = 31

 AND existing.SolveDate IS NULL

 WHERE f.Amount < 0

 AND existing.FalloutId IS NULL -- Not already in fallout

 -- Remove invalid records from Flow

 DELETE FROM Flow.Sales_Order_16

 WHERE Amount < 0

END

Fallout Monitoring and Reporting

Daily Fallout Dashboard

Key Metrics:

-- Total open fallout by source

CREATE VIEW [Fallout].[VW_FalloutBySource] AS

SELECT

 ss.SourceDescription,

 COUNT(*) as OpenFalloutCount,

 MIN(f.InsertDate) as OldestFallout,

 MAX(f.InsertDate) as LatestFallout

FROM Fallout.Fallout f

JOIN Reference.SourceSystem ss ON f.SourceSystemId = ss.SourceSystemId

WHERE f.SolveDate IS NULL

GROUP BY ss.SourceDescription

GO

-- Fallout by error category

CREATE VIEW [Fallout].[VW_FalloutByCategory] AS

SELECT

 ec.ErrorCategory,

 ec.ErrorDescription,

 COUNT(*) as FalloutCount,

 CAST(100.0 * COUNT(*) / SUM(COUNT(*)) OVER () AS DECIMAL(5,2)) as Per

FROM Fallout.Fallout f

JOIN Fallout.ErrorCode ec ON f.ErrorCodeId = ec.ErrorCodeId

WHERE f.SolveDate IS NULL

GROUP BY ec.ErrorCategory, ec.ErrorDescription

GO

-- Fallout aging analysis

CREATE VIEW [Fallout].[VW_FalloutAging] AS

SELECT

 CASE

 WHEN DATEDIFF(DAY, InsertDate, GETDATE()) <= 1 THEN '0-1 days'

 WHEN DATEDIFF(DAY, InsertDate, GETDATE()) <= 7 THEN '2-7 days'

 WHEN DATEDIFF(DAY, InsertDate, GETDATE()) <= 30 THEN '8-30 days'

 ELSE '30+ days'

 END as AgeRange,

 COUNT(*) as FalloutCount

FROM Fallout.Fallout

WHERE SolveDate IS NULL

GROUP BY

 CASE

 WHEN DATEDIFF(DAY, InsertDate, GETDATE()) <= 1 THEN '0-1 days'

 WHEN DATEDIFF(DAY, InsertDate, GETDATE()) <= 7 THEN '2-7 days'

 WHEN DATEDIFF(DAY, InsertDate, GETDATE()) <= 30 THEN '8-30 days'

 ELSE '30+ days'

 END

GO

Daily Fallout Report (for data stewards):

-- Email-ready fallout summary

SELECT

 ss.SourceDescription as [Source System],

 ec.ErrorDescription as [Error Type],

 COUNT(*) as [Record Count],

 MIN(f.InsertDate) as [First Occurrence],

 MAX(f.InsertDate) as [Latest Occurrence],

 DATEDIFF(DAY, MIN(f.InsertDate), GETDATE()) as [Days Open]

FROM Fallout.Fallout f

JOIN Reference.SourceSystem ss ON f.SourceSystemId = ss.SourceSystemId

JOIN Fallout.ErrorCode ec ON f.ErrorCodeId = ec.ErrorCodeId

WHERE f.SolveDate IS NULL

 AND f.InsertDate >= DATEADD(DAY, -30, GETDATE()) -- Last 30 days

GROUP BY ss.SourceDescription, ec.ErrorDescription

HAVING COUNT(*) >= 10 -- Only significant volumes

ORDER BY COUNT(*) DESC

Fallout Trends Analysis

Quality Improvement Tracking:

-- Monthly fallout rate trend

SELECT

 YEAR(f.InsertDate) as Year,

 MONTH(f.InsertDate) as Month,

 COUNT(*) as FalloutCount,

 (SELECT COUNT(*)

 FROM Sales.Order o

 WHERE YEAR(o.OrderDate) = YEAR(f.InsertDate)

 AND MONTH(o.OrderDate) = MONTH(f.InsertDate)

) as TotalRecords,

 CAST(100.0 * COUNT(*) /

 NULLIF((SELECT COUNT(*)

 FROM Sales.Order o

 WHERE YEAR(o.OrderDate) = YEAR(f.InsertDate)

 AND MONTH(o.OrderDate) = MONTH(f.InsertDate)), 0)

 AS DECIMAL(5,2)) as FalloutRate

FROM Fallout.Fallout f

WHERE f.InsertDate >= DATEADD(MONTH, -12, GETDATE())

GROUP BY YEAR(f.InsertDate), MONTH(f.InsertDate)

ORDER BY Year, Month

Fallout Resolution Workflow

flowchart TD

 Start[Daily Fallout Report] --> Prioritize[Step 1: Prioritize
By

 Prioritize --> Analyze[Step 2: Root Cause Analysis
Query Fallout

 Analyze --> Decision{Issue Type?}

 Decision -->|Missing FK| FixDim[Fix Dimension Data
Load missing r

 Decision -->|Data Quality| FixSource[Fix at Source
Correct source

 Decision -->|Business Rule| AdjustRule[Adjust Business Rule
Updat

 FixDim --> Reprocess[Step 3: Reprocess
Re-run ETL Pipeline]

 FixSource --> Reprocess

 AdjustRule --> Reprocess

 Reprocess --> Check{Records
Load Successfully?}

 Check -->|Yes| AutoResolve[Step 4: Auto-Resolution
SolveDate Upda

 Check -->|No| ReAnalyze[Re-analyze
Different root cause]

 ReAnalyze --> Analyze

 AutoResolve --> Monitor[Step 5: Monitor
Track Resolution Trends]

 style Start fill:#e1f5ff

 style Prioritize fill:#fff4e1

 style Analyze fill:#e8f5e9

 style Reprocess fill:#f3e5f5

 style AutoResolve fill:#c8e6c9

 style Monitor fill:#4caf50,color:#fff

Step 1: Identify High-Priority Fallout

Prioritization Criteria:

1. Volume: High record count indicates systemic issue
2. Age: Old fallout suggests resolution challenges
3. Business Impact: Affects critical reports or KPIs
4. Trend: Growing fallout requires immediate attention

Prioritization Query:

SELECT

 f.ErrorCodeId,

 ec.ErrorDescription,

 ss.SourceDescription,

 COUNT(*) as RecordCount,

 AVG(DATEDIFF(DAY, f.InsertDate, GETDATE())) as AvgAgeDays,

 CASE

 WHEN COUNT(*) > 1000 THEN 'High'

 WHEN COUNT(*) > 100 THEN 'Medium'

 ELSE 'Low'

 END as VolumePriority,

 CASE

 WHEN AVG(DATEDIFF(DAY, f.InsertDate, GETDATE())) > 30 THEN 'High'

 WHEN AVG(DATEDIFF(DAY, f.InsertDate, GETDATE())) > 7 THEN 'Medium

 ELSE 'Low'

 END as AgePriority

FROM Fallout.Fallout f

JOIN Fallout.ErrorCode ec ON f.ErrorCodeId = ec.ErrorCodeId

JOIN Reference.SourceSystem ss ON f.SourceSystemId = ss.SourceSystemId

WHERE f.SolveDate IS NULL

GROUP BY f.ErrorCodeId, ec.ErrorDescription, ss.SourceDescription

ORDER BY COUNT(*) DESC

Step 2: Root Cause Analysis

For Missing FK Errors (11-19):

-- Analyze missing dimension values

SELECT

 f.SourceSystemIdentifier,

 s.ColumnThatShouldMap,

 COUNT(*) as Occurrences

FROM Fallout.Fallout f

JOIN DS_Stage_Source.dbo.SourceTable s

 ON f.SourceSystemIdentifier = s.SourceId

WHERE f.ErrorCodeId = 15 -- Missing Customer FK

 AND f.SolveDate IS NULL

GROUP BY f.SourceSystemIdentifier, s.ColumnThatShouldMap

ORDER BY COUNT(*) DESC

Common Root Causes:

Dimension data not yet loaded (timing issue)
Source uses different identifier than DWH
Data quality issue at source (invalid FKs)
Mapping logic error in dataflow

For Business Rule Violations (30-39):

-- Review rule violations

SELECT TOP 100

 f.SourceSystemIdentifier,

 s.Amount,

 s.OrderDate,

 s.Status

FROM Fallout.Fallout f

JOIN DS_Stage_Source.dbo.Orders s

 ON f.SourceSystemIdentifier = s.OrderId

WHERE f.ErrorCodeId = 31 -- Negative amount

 AND f.SolveDate IS NULL

ORDER BY f.InsertDate DESC

Step 3: Remediation

Option A: Fix at Source

Best practice: Correct data in source system

Sustainable long-term fix
Improves overall data quality
Prevents recurrence

Example:

-- After fixing in source, verify fix

SELECT * FROM DS_Stage_Source.dbo.Customers

WHERE CustomerId IN (

 SELECT SourceSystemIdentifier

 FROM Fallout.Fallout

 WHERE ErrorCodeId = 15 AND SolveDate IS NULL

)

Option B: Add Missing Dimension Data

For missing FKs: Load the missing dimension records

-- Insert missing customers

INSERT INTO Contact.Customer (

 CustomerNK,

 CustomerName,

 ValidFromDate,

 ValidToDate,

 SourceSystemId,

 SourceSystemIdentifier

)

SELECT DISTINCT

 MissingCustomerId,

 'Unknown Customer - ' + MissingCustomerId,

 '1900-01-01',

 '9999-12-31',

 99, -- Special SourceSystemId for "Unknown" records

 MissingCustomerId

FROM (

 SELECT DISTINCT s.CustomerId as MissingCustomerId

 FROM Fallout.Fallout f

 JOIN DS_Stage_Source.dbo.Orders s

 ON f.SourceSystemIdentifier = s.OrderId

 WHERE f.ErrorCodeId = 15 AND f.SolveDate IS NULL

) missing

WHERE NOT EXISTS (

 SELECT 1 FROM Contact.Customer c

 WHERE c.CustomerNK = missing.MissingCustomerId

)

Option C: Adjust Business Rules

If rule is too strict or incorrect:

-- Document rule change

INSERT INTO [Logging].[BusinessRuleChanges] (

 RuleId,

 OldRule,

 NewRule,

 Reason,

 ApprovedBy,

 ChangeDate

) VALUES (

 'NEG_AMOUNT',

 'Amount must be positive',

 'Amount must be >= -1000 (allow small corrections)',

 'Business requested to allow small negative adjustments',

 'Data Governance Committee',

 GETDATE()

)

-- Update dataflow or validation logic accordingly

Step 4: Reprocessing

Manual Reprocessing:

-- Repopulate Flow table for affected records

DECLARE @SourceSystemId BIGINT = 42

-- Clear Flow table

EXEC('TRUNCATE TABLE Flow.Sales_Order_' + @SourceSystemId)

-- Re-extract fallout records specifically

INSERT INTO Flow.Sales_Order_42

SELECT

 -- Apply SourceColumnMapping

FROM DS_Stage_Source.dbo.Orders s

WHERE s.OrderId IN (

 SELECT SourceSystemIdentifier

 FROM Fallout.Fallout

 WHERE SourceSystemId = @SourceSystemId

 AND ErrorCodeId IN (11, 12, 13) -- FK errors

 AND SolveDate IS NULL

)

-- Run ADF pipeline (manually or via trigger)

Automatic Resolution:

Records automatically resolve when they pass validation:

Fallout record remains with SolveDate = NULL
Pipeline re-runs (scheduled or manual)
Record now passes validation
Loads to DWH successfully
Automated process updates SolveDate

-- Automated resolution trigger (runs after successful pipeline)

CREATE PROCEDURE [Fallout].[MarkResolvedFallout]

 @SourceSystemId BIGINT

AS

BEGIN

 UPDATE f

 SET SolveDate = GETDATE()

 FROM Fallout.Fallout f

 JOIN Reference.SourceSystem ss

 ON f.SourceSystemId = ss.SourceSystemId

 WHERE f.SourceSystemId = @SourceSystemId

 AND f.SolveDate IS NULL

 AND EXISTS (

 -- Record now exists in DWH

 SELECT 1

 FROM [Sales].[Order] o

 WHERE o.SourceSystemId = f.SourceSystemId

 AND o.SourceSystemIdentifier = f.SourceSystemIdentifier

)

END

Source System Traceability

Complete Data Lineage

Every record tracks its origin:

-- Standard columns on all DWH tables

[SourceSystemId] [bigint] NOT NULL -- Which source system

[SourceSystemIdentifier] [nvarchar](100) -- PK in source system

Benefits:

1. Impact Analysis: Know which reports affected by source changes
2. Data Reconciliation: Trace discrepancies back to source
3. Audit Compliance: Prove data provenance
4. Multi-Source Support: Same entity from multiple sources

Lineage Queries

Find source of specific record:

SELECT

 o.OrderId,

 o.OrderDate,

 ss.SourceDescription,

 ss.SourceDatabase,

 ss.SourceSchema,

 ss.SourceTable,

 o.SourceSystemIdentifier as SourcePK

FROM Sales.Order o

JOIN Reference.SourceSystem ss ON o.SourceSystemId = ss.SourceSystemId

WHERE o.OrderId = 12345

Count records by source:

SELECT

 ss.SourceDescription,

 COUNT(*) as RecordCount,

 MIN(o.OrderDate) as EarliestOrder,

 MAX(o.OrderDate) as LatestOrder

FROM Sales.Order o

JOIN Reference.SourceSystem ss ON o.SourceSystemId = ss.SourceSystemId

GROUP BY ss.SourceDescription

ORDER BY RecordCount DESC

Trace back to raw source data:

-- Complete lineage

DECLARE @OrderId BIGINT = 12345

SELECT

 'DWH' as Layer,

 o.OrderDate,

 o.Amount,

 o.CustomerName

FROM DS_DWH.Sales.Order o

WHERE o.OrderId = @OrderId

UNION ALL

SELECT

 'Stage' as Layer,

 s.OrderDate,

 s.Amount,

 s.CustomerName

FROM DS_DWH.Sales.Order o

JOIN DS_DWH.Reference.SourceSystem ss ON o.SourceSystemId = ss.SourceSyst

JOIN DS_Stage_Source.dbo.Orders s

 ON s.OrderId = o.SourceSystemIdentifier

WHERE o.OrderId = @OrderId

-- Can extend to History tables for complete timeline

Audit Trails and Compliance

Timeslice-Based Audit

Point-in-time reconstruction:

-- What was Customer #123's data on 2023-06-15?

SELECT

 CustomerName,

 Email,

 Phone,

 Address

FROM Contact.Customer

WHERE CustomerNK = '123'

 AND '2023-06-15' BETWEEN ValidFromDate AND ValidToDate

Change history:

-- All changes to Customer #123

SELECT

 CustomerId,

 CustomerName,

 Email,

 ValidFromDate,

 ValidToDate,

 CASE

 WHEN ValidToDate = '9999-12-31' THEN 'Current'

 ELSE 'Historical'

 END as Status

FROM Contact.Customer

WHERE CustomerNK = '123'

ORDER BY ValidFromDate

History Tables in Stage

Complete change log:

-- All changes ever made to source record

SELECT

 ChangeType,

 ChangeTime,

 ProductName,

 Price,

 ModifiedBy

FROM DS_Stage_Source.History.Products

WHERE ProductId = 456

ORDER BY ChangeTime DESC

Regulatory Compliance:

GDPR: Prove when data was received, modified, deleted
SOX: Audit trail for financial data
HIPAA: Track access and modifications to sensitive data

Retention Policies

Fallout Retention:

-- Archive old resolved fallout (keep for audit period)

INSERT INTO Fallout.Fallout_Archive

SELECT * FROM Fallout.Fallout

WHERE SolveDate IS NOT NULL

 AND SolveDate < DATEADD(YEAR, -2, GETDATE())

DELETE FROM Fallout.Fallout

WHERE SolveDate IS NOT NULL

 AND SolveDate < DATEADD(YEAR, -2, GETDATE())

Historical Data Retention:

-- Archive old timeslices (beyond regulatory requirement)

-- Move to partitioned archive table or compress

ALTER TABLE Contact.Customer REBUILD PARTITION = @OldPartition

WITH (DATA_COMPRESSION = PAGE)

Data Quality Metrics and KPIs

Quality Scorecard

Source System Quality Score:

CREATE VIEW [Fallout].[VW_SourceSystemQualityScore] AS

WITH SourceMetrics AS (

 SELECT

 ss.SourceSystemId,

 ss.SourceDescription,

 COALESCE(loaded.RecordCount, 0) as LoadedRecords,

 COALESCE(fallout.FalloutCount, 0) as FalloutRecords

 FROM Reference.SourceSystem ss

 LEFT JOIN (

 SELECT SourceSystemId, COUNT(*) as RecordCount

 FROM Sales.Order

 WHERE OrderDate >= DATEADD(MONTH, -1, GETDATE())

 GROUP BY SourceSystemId

) loaded ON ss.SourceSystemId = loaded.SourceSystemId

 LEFT JOIN (

 SELECT SourceSystemId, COUNT(*) as FalloutCount

 FROM Fallout.Fallout

 WHERE InsertDate >= DATEADD(MONTH, -1, GETDATE())

 GROUP BY SourceSystemId

) fallout ON ss.SourceSystemId = fallout.SourceSystemId

)

SELECT

 SourceSystemId,

 SourceDescription,

 LoadedRecords,

 FalloutRecords,

 LoadedRecords + FalloutRecords as TotalRecords,

 CAST(100.0 * LoadedRecords /

 NULLIF(LoadedRecords + FalloutRecords, 0) AS DECIMAL(5,2)) as Qua

 CASE

 WHEN CAST(100.0 * LoadedRecords / NULLIF(LoadedRecords + FalloutR

 WHEN CAST(100.0 * LoadedRecords / NULLIF(LoadedRecords + FalloutR

 WHEN CAST(100.0 * LoadedRecords / NULLIF(LoadedRecords + FalloutR

 ELSE 'Needs Improvement'

 END as QualityRating

FROM SourceMetrics

GO

Target KPIs:

Quality Score > 95% (< 5% fallout rate)
Fallout resolution time < 48 hours
No fallout older than 30 days
100% source system traceability

Continuous Monitoring

Automated Alerts:

-- Daily quality check (run via scheduled job)

DECLARE @FalloutThreshold INT = 100

DECLARE @QualityThreshold DECIMAL(5,2) = 90.0

IF EXISTS (

 SELECT 1

 FROM Fallout.VW_SourceSystemQualityScore

 WHERE QualityScore < @QualityThreshold

 OR FalloutRecords > @FalloutThreshold

)

BEGIN

 -- Send alert email

 EXEC msdb.dbo.sp_send_dbmail

 @profile_name = 'DWH Alerts',

 @recipients = 'data-stewards@company.com',

 @subject = 'Data Quality Alert: Threshold Exceeded',

 @body = 'One or more sources have exceeded quality thresholds. Re

 @importance = 'High'

END

Governance Framework

Data Stewardship Roles

Data Steward Responsibilities:

1. Monitor daily fallout reports
2. Prioritize fallout resolution
3. Coordinate with source system owners
4. Approve business rule changes
5. Maintain data quality documentation

Source System Owner Responsibilities:

1. Maintain source data quality
2. Respond to fallout investigations
3. Implement fixes at source
4. Communicate schema changes
5. Provide subject matter expertise

Data Governance Committee:

1. Set quality standards and KPIs
2. Approve policy changes
3. Resolve escalated issues
4. Review quarterly metrics
5. Prioritize framework enhancements

Standard Operating Procedures

SOP 1: Daily Fallout Review

Time: 9:00 AM daily
Owner: Data Steward
Process:

1. Review overnight fallout report
2. Identify new high-priority issues
3. Assign to source system owners
4. Update ticket system

SOP 2: Root Cause Analysis

Trigger: Fallout volume > 100 records or age > 7 days
Owner: Data Steward + Source System Owner
Process:

1. Extract sample records
2. Analyze source data
3. Identify root cause
4. Document findings
5. Propose remediation

SOP 3: Business Rule Change

Trigger: Proposed rule modification
Owner: Data Governance Committee
Process:

1. Submit change request with justification
2. Impact analysis (affect how many records?)
3. Committee review and approval
4. Implementation
5. Testing and validation
6. Documentation update

Best Practices

Design-Time Best Practices

1. Define Error Codes Early: Standardize error taxonomy

2. Implement Fallout for All FKs: Don't let missing FKs block pipelines
3. Deduplicate Fallout: Check for existing fallout before inserting
4. Meaningful Error Messages: Include context in ErrorDescription

Runtime Best Practices

1. Monitor Fallout Daily: Don't let it accumulate
2. Resolve Systematically: Prioritize by volume and impact
3. Fix at Source: Sustainable long-term solution
4. Document Patterns: Create runbooks for common issues

Organizational Best Practices

1. Assign Clear Ownership: Every source has a designated owner
2. Regular Review Meetings: Weekly fallout review with stakeholders
3. Quality Metrics in Dashboards: Make quality visible to all
4. Continuous Improvement: Track and celebrate quality improvements

Conclusion

The UDM Framework's data quality and governance features provide:

1. Visibility: Complete transparency into data quality issues
2. Resilience: Graceful degradation when issues occur
3. Traceability: Full audit trail from source to consumption
4. Accountability: Clear ownership and resolution workflows
5. Compliance: Built-in audit capabilities for regulations
6. Continuous Improvement: Metrics to track quality over time

These features transform data quality from a reactive problem into a proactive,
manageable process, enabling organizations to maintain trustworthy data at scale.

Next: 08_Case_Study_Pricewise.md - Real-world implementation example

