UDM Framework: Data Quality &

Governance

Built-In Quality Assurance and Governance Features

Introduction

Data quality and governance are not afterthoughts in the UDM Framework—they're built
into its core architecture. The Fallout system, source system traceability, and audit
capabilities provide comprehensive data quality management and governance that meets
regulatory and business requirements.

The Fallout System: Heart of Data Quality

Philosophy: Fail Gracefully, Track Everything

Traditional Data Quality Approach:

flowchart LR
BadData[Bad Data] --> Faill[ETL Fails]
Fail --> Stop[Pipeline Stops]
Stop —--> NoData[No Data Loaded]

NoData --> Manual [Manual Investigation]
Manual --> Fix[Fix]
Fix —--> Rerun[Rerun]

style BadData fill:#ffcdd?2
style Fail fill:#f44336,color:#fff
style Stop fill:#f44336,color:#fff
style NoData fill:#ffcdd?2

Problems:

All-or-nothing: One bad record blocks thousands of good records

Limited visibility: Error logs are cryptic and scattered

Slow resolution: Manual investigation required for each failure

e Business impact: Reports missing data without explanation

UDM Fallout Approach:

flowchart LR
BadData[Bad Data Detected] --> Log[Logged to Fallout]
Log —--> Continue[Pipeline Continues]
Continue —--> GoodData[Good Data Loaded]

GoodData --> Track[Transparent Tracking]

Track —--> Analyze[Systematic Analysis]
Analyze —--> Resolve[Resolution]
Resolve —--> Reprocess[Auto-Reprocessing]

style BadData fill:#fffdel

style Log fill:#e8f5e9

style Continue fill:#c8e6c9

style GoodData fill:#4cafb50,color:#fff
style Track fill:#elf5ff

style Analyze fill:#elf5ff

style Resolve fill:#c8e6c9

style Reprocess fill:#4caf50,color:#fff

Benefits:

e Graceful degradation: Good data flows through, bad data tracked separately
e Complete visibility: Every issue logged with context

e Faster resolution: Systematic analysis and prioritization

e Business transparency: Stakeholders see what's missing and why

Fallout Architecture

Core Tables

Fallout.Fallout: Main tracking table

CREATE TABLE [Fallout].[Fallout] (
FalloutId] [int] IDENTITY(1l,1) NOT NULL,

[

[ErrorCodeId] [int] NOT NULL, -- Type of error
[SourceSystemId] [bigint] NOT NULL, —-— Which source
[SourceSystemIdentifier] [nvarchar] (100) NOT NULL, -- Which record
[InsertDate] [datetime] NOT NULL, —-— When detected
[SolveDate] [datetime] NULL, —-— When resolved

CONSTRAINT [PK Fallout] PRIMARY KEY ([FalloutId])

Fallout.ErrorCode: Error taxonomy

CREATE TABLE [Fallout].[ErrorCode] (
[ErrorCodeId] [int] NOT NULL,
[ErrorDescription] [nvarchar] (200) NULL,
[ErrorCategory] [nvarchar] (50) NULL,
[ResolutionGuidance] [nvarchar] (max) NULL,

CONSTRAINT [PK ErrorCode] PRIMARY KEY ([ErrorCodeId])

Standard Error Codes

Referential Integrity (11-19):

e 11: Missing Foreign Key - Lead/Opportunity

12: Missing Foreign Key - Channel/Marketing

13: Missing Foreign Key - Status/Lookup

14: Missing Foreign Key - Product

15: Missing Foreign Key - Customer/Contact

16-19: Additional FK errors (domain-specific)
Data Format (20-29):

e 20: Invalid Data Type (type conversion failure)
21: Invalid Date Format

22: Invalid Numeric Value

23: Invalid Email Format

24: Invalid Phone Format
25-29: Additional format errors

Business Logic (30-39):

e 30: Business Rule Violation - General

¢ 31: Negative Amount (where positive expected)
e 32: Future Date (where past expected)

e 33:Invalid Status Transition

e 34: Duplicate Transaction

e 35-39: Additional business rule errors
Data Quality (40-49):

e 40: Duplicate Record

e 41: Missing Required Field

e 42: Orphaned Record

e 43: Data Inconsistency

e 44-49: Additional quality issues

Fallout Detection Patterns

Pattern 1: Missing Foreign Key

// ADF Dataflow transformation

Records, DimensionTable lookup (
Records@FKColumn == DimensionTable@IdColumn,
multiple: false,
pickup: 'first'

) ~> LookupDimension

// Split: Found vs. Not Found
LookupDimension split(
isNull (DimensionTable@IdColumn),
disjoint: false

) ~> SplitOnFK@ (FalloutPath, SuccessPath)

// Route to fallout

SplitOnFK@FalloutPath derive (
ErrorCodeId = 15, // Missing Customer FK
InsertDate = currentTimestamp ()

) ~> AddFalloutMetadata

// Deduplicate (don't log same error twice)

AddFalloutMetadata, ExistingFallout exists (
AddFalloutMetadata@ErrorCodeId == ExistingFallout@ErrorCodeId
&& AddFalloutMetadata@SourceSystemId == ExistingFallout@SourceSystem!:
&& AddFalloutMetadata@SourceSystemIdentifier == ExistingFallout@Sourc
&& 1sNull (ExistingFallout@SolveDate),
negate: true

) ~> NewFalloutOnly

NewFalloutOnly sink(...) ~> FalloutSink

// Continue with valid records

SplitOnFK@SuccessPath ~> NextTransformation

Pattern 2: Business Rule Violation

-- Stored procedure validation before dataflow
CREATE PROCEDURE [dbo].[ValidateBusinessRules]
@SourceSystemId BIGINT
AS
BEGIN
-— Detect negative amounts (where should be positive)
INSERT INTO Fallout.Fallout (
ErrorCodeld,
SourceSystemId,
SourceSystemIdentifier,
InsertDate
)
SELECT DISTINCT
31, -- Negative amount error
@SourceSystemld,
f.SourceSystemIdentifier,
GETDATE ()
FROM Flow.Sales Order 16 £
LEFT JOIN Fallout.Fallout existing
ON existing.SourceSystemId = @SourceSystemId
AND existing.SourceSystemIdentifier = f.SourceSystemIdentifier
AND existing.ErrorCodeId = 31
AND existing.SolveDate IS NULL
WHERE f.Amount < 0
AND existing.FalloutId IS NULL -- Not already in fallout

-- Remove invalid records from Flow
DELETE FROM Flow.Sales Order 16
WHERE Amount < 0

END

Fallout Monitoring and Reporting

Daily Fallout Dashboard

Key Metrics:

-—- Total open fallout by source
CREATE VIEW [Fallout].[VW FalloutBySource] AS
SELECT
ss.SourceDescription,
COUNT (*) as OpenFalloutCount,
MIN (f.InsertDate) as OldestFallout,
MAX (f.InsertDate) as LatestFallout
FROM Fallout.Fallout £
JOIN Reference.SourceSystem ss ON f.SourceSystemId = ss.SourceSystemlId
WHERE f.SolveDate IS NULL
GROUP BY ss.SourceDescription
GO

-- Fallout by error category
CREATE VIEW [Fallout].[VW FalloutByCategory] AS
SELECT
ec.ErrorCategory,
ec.ErrorDescription,
COUNT (*) as FalloutCount,
CAST (100.0 * COUNT (*) / SUM(COUNT (*)) OVER () AS DECIMAL(5,2)) as Pei
FROM Fallout.Fallout £
JOIN Fallout.ErrorCode ec ON f.ErrorCodeId = ec.ErrorCodeId
WHERE f.SolveDate IS NULL
GROUP BY ec.ErrorCategory, ec.ErrorDescription
GO

-- Fallout aging analysis

CREATE VIEW [Fallout].[VW FalloutAging] AS

SELECT

CASE
WHEN DATEDIFF (DAY, InsertDate, GETDATE()) <= 1 THEN '0O-1 days'
WHEN DATEDIFF (DAY, InsertDate, GETDATE()) <= 7 THEN '2-7 days'
WHEN DATEDIFF (DAY, InsertDate, GETDATE()) <= 30 THEN '8-30 days'

ELSE '30+ days'
END as AgeRange,
COUNT (*) as FalloutCount
FROM Fallout.Fallout
WHERE SolveDate IS NULL

GROUP BY
CASE
WHEN DATEDIFF (DAY, InsertDate, GETDATE()) <= 1 THEN '0O-1 days'
WHEN DATEDIFF (DAY, InsertDate, GETDATE()) <= 7 THEN '2-7 days'
WHEN DATEDIFF (DAY, InsertDate, GETDATE()) <= 30 THEN '8-30 days'

ELSE '30+ days'
END
GO

Daily Fallout Report (for data stewards):

-- Email-ready fallout summary
SELECT
ss.SourceDescription as [Source System],
ec.ErrorDescription as [Error Typel],
COUNT (*) as [Record Count],
MIN (f.InsertDate) as [First Occurrence],
MAX (f.InsertDate) as [Latest Occurrence],
DATEDIFF (DAY, MIN(f.InsertDate), GETDATE()) as [Days Open]
FROM Fallout.Fallout f
JOIN Reference.SourceSystem ss ON f.SourceSystemId = ss.SourceSystemld
JOIN Fallout.ErrorCode ec ON f.ErrorCodeId = ec.ErrorCodeld
WHERE f.SolveDate IS NULL
AND f.InsertDate >= DATEADD (DAY, -30, GETDATE()) -- Last 30 days
GROUP BY ss.SourceDescription, ec.ErrorDescription
HAVING COUNT (*) >= 10 -- Only significant volumes
ORDER BY COUNT (*) DESC

Fallout Trends Analysis

Quality Improvement Tracking:

-— Monthly fallout rate trend
SELECT
YEAR (f.InsertDate) as Year,
MONTH (f.InsertDate) as Month,
COUNT (*) as FalloutCount,
(SELECT COUNT (*)
FROM Sales.Order o
WHERE YEAR (o.OrderDate) = YEAR(f.InsertDate)
AND MONTH (o.OrderDate) = MONTH (f.InsertDate)
) as TotalRecords,
CAST (100.0 * COUNT (*) /
NULLIF ((SELECT COUNT (*)
FROM Sales.Order o

WHERE YEAR (o0.OrderDate) = YEAR(f.InsertDate)
AND MONTH (o.OrderDate) = MONTH (f.InsertDate)), 0)

AS DECIMAL (5,2)) as FalloutRate
FROM Fallout.Fallout £
WHERE f.InsertDate >= DATEADD (MONTH, -12, GETDATE())
GROUP BY YEAR(f.InsertDate), MONTH (f.InsertDate)
ORDER BY Year, Month

Fallout Resolution Workflow

flowchart TD
Start[Daily Fallout Report] --> Prioritize[Step 1:

Prioritize
By

Prioritize --> Analyze[Step 2: Root Cause Analysis
Query Fallout

Analyze —--> Decision{Issue Type?}

Decision -->|Missing FK| FixDim[Fix Dimension Data
Load missing 1

Decision —-->|Data Quality| FixSource[Fix at Source
Correct source

Decision —-->|Business Rule| AdjustRule[Adjust Business Rule
Updat

FixDim --> Reprocess[Step 3: Reprocess
Re-run ETL Pipeline]

FixSource --> Reprocess

AdjustRule --> Reprocess
Reprocess —--> Check{Records
Load Successfully?}

Check -->|Yes| AutoResolve[Step 4: Auto-Resolution
SolveDate Upd:

Check -->|No| ReAnalyze[Re-analyze
Different root cause]
ReAnalyze --> Analyze
AutoResolve —--> Monitor[Step 5: Monitor
Track Resolution Trends]

style Start fill:#elf5ff

style Prioritize fill:#fffdel

style Analyze fill:#e8f5e9

style Reprocess fill:#f3e5f5

style AutoResolve fill:#c8e6c?9

style Monitor fill:#4cafb50,color:#fff

Step 1: Identify High-Priority Fallout
Prioritization Criteria:

1. Volume: High record count indicates systemic issue
2. Age: Old fallout suggests resolution challenges
3. Business Impact: Affects critical reports or KPIs

4. Trend: Growing fallout requires immediate attention

Prioritization Query:

SELECT

f.ErrorCodeld,

ec.ErrorDescription,

ss.SourceDescription,

COUNT (*) as RecordCount,

AVG (DATEDIFF (DAY, f.InsertDate, GETDATE())) as AvgAgeDays,

CASE
WHEN COUNT (*) > 1000 THEN 'High'
WHEN COUNT (*) > 100 THEN 'Medium'
ELSE 'Low'

END as VolumePriority,

CASE

WHEN AVG (DATEDIFF (DAY, f.InsertDate, GETDATE())) > 30 THEN 'High'

WHEN AVG (DATEDIFF (DAY, f.InsertDate, GETDATE())) > 7 THEN 'Mediur

ELSE 'Low'
END as AgePriority
FROM Fallout.Fallout £
JOIN Fallout.ErrorCode ec ON f.ErrorCodeId = ec.ErrorCodeId
JOIN Reference.SourceSystem ss ON f.SourceSystemId = ss.SourceSystemlId
WHERE f.SolveDate IS NULL
GROUP BY f.ErrorCodeld, ec.ErrorDescription, ss.SourceDescription

ORDER BY COUNT (*) DESC

Step 2: Root Cause Analysis

For Missing FK Errors (11-19):

-—- Analyze missing dimension values
SELECT
f.SourceSystemIdentifier,
s.ColumnThatShouldMap,
COUNT (*) as Occurrences
FROM Fallout.Fallout £
JOIN DS Stage Source.dbo.SourceTable s
ON f.SourceSystemIdentifier = s.SourcelId
WHERE f.ErrorCodeld = 15 -- Missing Customer FK
AND f.SolveDate IS NULL
GROUP BY f.SourceSystemIdentifier, s.ColumnThatShouldMap
ORDER BY COUNT (*) DESC

Common Root Causes:

Dimension data not yet loaded (timing issue)
e Source uses different identifier than DWH

Data quality issue at source (invalid FKs)

Mapping logic error in dataflow

For Business Rule Violations (30-39):
-— Review rule violations

SELECT TOP 100

f.SourceSystemIdentifier,

s.Amount,
s.OrderDate,
s.Status
FROM Fallout.Fallout £
JOIN DS Stage Source.dbo.Orders s
ON f.SourceSystemlIdentifier = s.0OrderId
WHERE f.ErrorCodeId = 31 -- Negative amount
AND f.SolveDate IS NULL
ORDER BY f.InsertDate DESC

Step 3: Remediation

Option A: Fix at Source
Best practice: Correct data in source system

e Sustainable long-term fix
e Improves overall data quality
e Prevents recurrence

Example:

-- After fixing in source, verify fix
SELECT * FROM DS Stage Source.dbo.Customers
WHERE CustomerId IN (

SELECT SourceSystemlIdentifier

FROM Fallout.Fallout

WHERE ErrorCodeId = 15 AND SolveDate IS NULL

Option B: Add Missing Dimension Data

For missing FKs: Load the missing dimension records

-- Insert missing customers
INSERT INTO Contact.Customer (
CustomerNK,
CustomerName,
ValidFromDate,
ValidToDate,

SourceSystemld,
SourceSystemIdentifier
)
SELECT DISTINCT
MissingCustomerId,
'Unknown Customer - ' + MissingCustomerId,
'1900-01-01",
'9999-12-31",
99, -- Special SourceSystemId for "Unknown" records
MissingCustomerId
FROM (
SELECT DISTINCT s.CustomerId as MissingCustomerId
FROM Fallout.Fallout £
JOIN DS Stage Source.dbo.Orders s
ON f.SourceSystemIdentifier = s.0OrderId
WHERE f.ErrorCodeId = 15 AND f.SolveDate IS NULL
) missing
WHERE NOT EXISTS (
SELECT 1 FROM Contact.Customer c

WHERE c.CustomerNK = missing.MissingCustomerId

Option C: Adjust Business Rules

If rule is too strict or incorrect:

-— Document rule change
INSERT INTO [Logging].[BusinessRuleChanges] (
RuleId,
OldRule,
NewRule,
Reason,
ApprovedBy,
ChangeDate
) VALUES (
'NEG_AMOUNT',
'Amount must be positive',
'Amount must be >= -1000 (allow small corrections)',
'Business requested to allow small negative adjustments'
'Data Governance Committee',

GETDATE ()

-- Update dataflow or validation logic accordingly

Step 4: Reprocessing

Manual Reprocessing:

-—- Repopulate Flow table for affected records
DECLARE (@SourceSystemId BIGINT = 42

-—- Clear Flow table
EXEC ('TRUNCATE TABLE Flow.Sales Order ' + (@SourceSystemId)

-- Re-extract fallout records specifically
INSERT INTO Flow.Sales Order 42
SELECT
-— Apply SourceColumnMapping
FROM DS Stage Source.dbo.Orders s
WHERE s.0OrderId IN (
SELECT SourceSystemIdentifier
FROM Fallout.Fallout
WHERE SourceSystemId = @SourceSystemId
AND ErrorCodeId IN (11, 12, 13) -- FK errors
AND SolveDate IS NULL

-- Run ADF pipeline (manually or via trigger)

Automatic Resolution:
Records automatically resolve when they pass validation:

¢ Fallout record remains with SolveDate = NULL
e Pipeline re-runs (scheduled or manual)

e Record now passes validation

e Loads to DWH successfully

e Automated process updates SolveDate

-- Automated resolution trigger (runs after successful pipeline)

CREATE PROCEDURE [Fallout].[MarkResolvedFallout]

@SourceSystemId BIGINT

f.SourceSystemIdentifier

AS
BEGIN
UPDATE £
SET SolveDate = GETDATE ()
FROM Fallout.Fallout £
JOIN Reference.SourceSystem ss
ON f.SourceSystemId = ss.SourceSystemId
WHERE f.SourceSystemId = @SourceSystemlId
AND f.SolveDate IS NULL
AND EXISTS (
-—- Record now exists in DWH
SELECT 1
FROM [Sales].[Order] o
WHERE o.SourceSystemId = f.SourceSystemld
AND o.SourceSystemIdentifier =
)
END

Source System Traceability

Complete Data Lineage

Every record tracks its origin:

-- Standard columns on all DWH tables
[SourceSystemId] [bigint] NOT NULL

[SourceSystemIdentifier] [nvarchar] (100)

Benefits:

—-— Which source system

-- PK in source system

1. Impact Analysis: Know which reports affected by source changes

2. Data Reconciliation: Trace discrepancies back to source

3. Audit Compliance: Prove data provenance

4. Multi-Source Support: Same entity from multiple sources

Lineage Queries

Find source of specific record:

SELECT
0.0rderId,
o.0rderDate,
ss.SourceDescription,
ss.SourceDatabase,
ss.SourceSchema,
ss.SourceTable,
o.SourceSystemIdentifier as SourcePK
FROM Sales.Order o
JOIN Reference.SourceSystem ss ON o.SourceSystemId = ss.SourceSystemlId

WHERE o0.0rderId = 12345

Count records by source:

SELECT
ss.SourceDescription,
COUNT (*) as RecordCount,
MIN (o.OrderDate) as EarliestOrder,
MAX (0.0OrderDate) as LatestOrder
FROM Sales.Order o
JOIN Reference.SourceSystem ss ON o.SourceSystemId = ss.SourceSystemId
GROUP BY ss.SourceDescription
ORDER BY RecordCount DESC

Trace back to raw source data:

-— Complete lineage

DECLARE @OrderId BIGINT = 12345

SELECT
'DWH' as Layer,
o.OrderDate,
o.Amount,
o.CustomerName

FROM DS DWH.Sales.Order o

WHERE o0.0rderId = @OrderId

UNION ALL

SELECT
'Stage' as Layer,
s.OrderDate,
s.Amount,
s.CustomerName
FROM DS DWH.Sales.Order o
JOIN DS DWH.Reference.SourceSystem ss ON o.SourceSystemId = ss.SourceSyst
JOIN DS Stage Source.dbo.Orders s
ON s.OrderId = o.SourceSystemIdentifier

WHERE o0.0rderId = @QOrderId

-—- Can extend to History tables for complete timeline

Audit Trails and Compliance

Timeslice-Based Audit

Point-in-time reconstruction:

-- What was Customer #123's data on 2023-06-157?
SELECT
CustomerName,
Email,
Phone,
Address
FROM Contact.Customer
WHERE CustomerNK = '123"'
AND '2023-06-15"'" BETWEEN ValidFromDate AND ValidToDate

Change history:

-- All changes to Customer #123
SELECT

CustomerId,

CustomerName,
Email,
ValidFromDate,
ValidToDate,
CASE
WHEN ValidToDate = '9999-12-31' THEN 'Current'
ELSE 'Historical'
END as Status
FROM Contact.Customer
WHERE CustomerNK = '123"'
ORDER BY ValidFromDate

History Tables in Stage

Complete change log:

-— All changes ever made to source record
SELECT

ChangeType,

ChangeTime,

ProductName,

Price,

ModifiedBy
FROM DS Stage Source.History.Products
WHERE ProductId = 456
ORDER BY ChangeTime DESC

Regulatory Compliance:

e GDPR: Prove when data was received, modified, deleted
e SOX: Audit trail for financial data

e HIPAA: Track access and modifications to sensitive data

Retention Policies

Fallout Retention:

-— Archive old resolved fallout (keep for audit period)
INSERT INTO Fallout.Fallout Archive
SELECT * FROM Fallout.Fallout

WHERE SolveDate IS NOT NULL
AND SolveDate < DATEADD (YEAR, -2, GETDATE())

DELETE FROM Fallout.Fallout
WHERE SolveDate IS NOT NULL
AND SolveDate < DATEADD (YEAR, -2, GETDATE())

Historical Data Retention:

-— Archive old timeslices (beyond regulatory requirement)

-—- Move to partitioned archive table or compress

ALTER TABLE Contact.Customer REBUILD PARTITION = @OldPartition
WITH (DATA COMPRESSION = PAGE)

Data Quality Metrics and KPlIs

Quality Scorecard

Source System Quality Score:

CREATE VIEW [Fallout].[VW SourceSystemQualityScore] AS
WITH SourceMetrics AS (
SELECT
ss.SourceSystemId,
ss.SourceDescription,
COALESCE (loaded.RecordCount, 0) as LoadedRecords,
COALESCE (fallout.FalloutCount, 0) as FalloutRecords
FROM Reference.SourceSystem ss
LEFT JOIN (
SELECT SourceSystemId, COUNT (*) as RecordCount
FROM Sales.Order
WHERE OrderDate >= DATEADD (MONTH, -1, GETDATE())
GROUP BY SourceSystemId
) loaded ON ss.SourceSystemId = loaded.SourceSystemId
LEFT JOIN (
SELECT SourceSystemlId, COUNT (*) as FalloutCount
FROM Fallout.Fallout
WHERE InsertDate >= DATEADD (MONTH, -1, GETDATE ())

GROUP BY SourceSystemId
) fallout ON ss.SourceSystemId = fallout.SourceSystemId
)
SELECT
SourceSystemId,
SourceDescription,
LoadedRecords,
FalloutRecords,
LoadedRecords + FalloutRecords as TotalRecords,
CAST(100.0 * LoadedRecords /
NULLIF (LoadedRecords + FalloutRecords, 0) AS DECIMAL(5,2)) as Quc
CASE
WHEN CAST (100.0 * LoadedRecords / NULLIF (LoadedRecords + Falloutt
WHEN CAST (100.0 * LoadedRecords / NULLIF (LoadedRecords + Falloutt
WHEN CAST(100.0 * LoadedRecords / NULLIF (LoadedRecords + Falloutl
ELSE 'Needs Improvement'
END as QualityRating
FROM SourceMetrics
GO

Target KPIs:

Quiality Score > 95% (< 5% fallout rate)
Fallout resolution time < 48 hours

No fallout older than 30 days

100% source system traceability

Continuous Monitoring

Automated Alerts:

-- Daily quality check (run via scheduled job)
DECLARE Q@FalloutThreshold INT = 100
DECLARE @QualityThreshold DECIMAL (5,2) = 90.0

IF EXISTS (
SELECT 1
FROM Fallout.VW SourceSystemQualityScore
WHERE QualityScore < @QualityThreshold
OR FalloutRecords > @FalloutThreshold

BEGIN
-- Send alert email
EXEC msdb.dbo.sp send dbmail
@profile name = 'DWH Alerts',
@recipients = 'data-stewards@company.com',

@subject = 'Data Quality Alert: Threshold Exceeded’,

@body = 'One or more sources have exceeded quality thresholds.

@importance = 'High'

END

Re

Governance Framework

Data Stewardship Roles

Data Steward Responsibilities:

1. Monitor daily fallout reports

2. Prioritize fallout resolution

3. Coordinate with source system owners
4. Approve business rule changes

5. Maintain data quality documentation

Source System Owner Responsibilities:

1. Maintain source data quality

2. Respond to fallout investigations
3. Implement fixes at source

4. Communicate schema changes

5. Provide subject matter expertise
Data Governance Committee:

1. Set quality standards and KPIs
2. Approve policy changes
3. Resolve escalated issues
4. Review quarterly metrics

5. Prioritize framework enhancements

Standard Operating Procedures

SOP 1: Daily Fallout Review

e Time: 9:00 AM daily

e Owner: Data Steward

e Process:
1. Review overnight fallout report
2. |dentify new high-priority issues
3. Assign to source system owners
4. Update ticket system

SOP 2: Root Cause Analysis

e Trigger: Fallout volume > 100 records or age > 7 days
e Owner: Data Steward + Source System Owner
e Process:

1. Extract sample records

2. Analyze source data

3. Identify root cause

4. Document findings

5. Propose remediation
SOP 3: Business Rule Change

e Trigger: Proposed rule modification
e Owner: Data Governance Committee
e Process:
1. Submit change request with justification
2. Impact analysis (affect how many records?)
3. Committee review and approval
4. Implementation
5. Testing and validation
6. Documentation update

Best Practices

Design-Time Best Practices

1. Define Error Codes Early: Standardize error taxonomy

2. Implement Fallout for All FKs: Don't let missing FKs block pipelines
3. Deduplicate Fallout: Check for existing fallout before inserting
4. Meaningful Error Messages: Include context in ErrorDescription

Runtime Best Practices

1. Monitor Fallout Daily: Don't let it accumulate
2. Resolve Systematically: Prioritize by volume and impact
3. Fix at Source: Sustainable long-term solution
4. Document Patterns: Create runbooks for common issues

Organizational Best Practices

1. Assign Clear Ownership: Every source has a designated owner

2. Regular Review Meetings: Weekly fallout review with stakeholders

3. Quality Metrics in Dashboards: Make quality visible to all

4. Continuous Improvement: Track and celebrate quality improvements

Conclusion

The UDM Framework's data quality and governance features provide:

1. Visibility: Complete transparency into data quality issues
2. Resilience: Graceful degradation when issues occur

3. Traceability: Full audit trail from source to consumption
4. Accountability: Clear ownership and resolution workflows
5. Compliance: Built-in audit capabilities for regulations

6. Continuous Improvement: Metrics to track quality over time

These features transform data quality from a reactive problem into a proactive,

manageable process, enabling organizations to maintain trustworthy data at scale.

Next: 08 Case Study Pricewise.md - Real-world implementation example

